Cover Story: Elimination Round or Aptitude Test- How to Align CUET with NEP 2020 Goals  |  Life Inspirations: Master of a Dog House  |  Education Information: Climate Predictions: Is it all a Piffle!  |  Leadership Instincts: Raj Mashruwala Establishes CfHE Vagbhata Chair in Medical Devices at IITH   |  Parent Interventions: What Books Children Must Read this Summer Vacation   |  Rajagiri Round Table: Is Time Ripe for Entrepreneurial Universities in India?  |  Life Inspirations: How to Overcome Fear of Public Speaking  |  Technology Inceptions: Smart IoT-based, indigenously-developed, ICU Ventilator “Jeevan Lite” Launched  |  Parent Interventions: Meditation Reduces Guilt Feeling  |  Teacher Insights: Music Relief for Study Stress  |  Teacher Insights: Guided Play Effective for Children  |  Teacher Insights: Doing Calculations Boosts Mental Strength  |  Best Practices: Hugging for Happiness  |  Parent Interventions: Is Frequent Childcare Outside of the Family Beneficial for a Child's Development  |  Technology Inceptions: How to Prevent the Toxic Effects of Tricloson used in Consumer Products?  |  
September 27, 2019 Friday 04:26:35 AM IST

Cellular skeletons on a new avatar

Science Innovations

Cellular skeletons, or cytoskeletons, are shapeshifting networks of tiny protein filaments, enabling cells to propel themselves, carry cargo, and divide. Now, an interdisciplinary team of California Institute of Technology researchers has designed a way to study and manipulate the cytoskeleton in test tubes in the lab. Understanding how cells control movement could one day lead to tiny, bioinspired robots for therapeutic applications. The work also contributes to the development of new tools for manipulating fluids on very small scales relevant to molecular biology and chemistry.

The building blocks of the cellular cytoskeleton are thin, tube-like filaments called microtubules that can form together into three-dimensional scaffolds. Each microtubule is 1,000 times thinner than a human hair and only about 10 micrometers long.
Researchers have taken these molecules out of the cell and put them into test tubes, where the tubules and motor proteins spontaneously group together to organize themselves into star-shaped structures called asters.


Comments