Guest Column: The Psychotherapist with Fur and Four Legs!  |  Health Monitor: Dealing With Post Covid Syndrome  |  National Edu News: Secretary Higher Education urges students to emerge as job creators  |  National Edu News: PM addresses the 18th Convocation of Tezpur University, Assam  |  Leadership Instincts: Experts highlight the need for strengthening centre-state cooperation  |  Policy Indications: India’s global position rises both in innovations & publications  |  Education Information: Written Result of Indian Economic Service/Indian Statistical Service Examination  |  National Edu News: AstroSat’s Ultraviolet Imaging Telescope spots rare ultraviolet-bright stars  |  Parent Interventions: Randomized trials could help to return children safely to schools   |  Parent Interventions: How fellow students improve your own grades   |  Parent Interventions: School-made lunch 'better' for children  |  Teacher Insights: Second Anniversary of India Science, Nation’s OTT Channel  |  Leadership Instincts: Participation of MGIEP in the Implementation of NEP 2020  |  Teacher Insights: World of Puzzling Patterns  |  Education Information: HKUST Collaborates with Hang Lung to Foster Young Mathematics Talent  |  
September 27, 2019 Friday 04:26:35 AM IST

Cellular skeletons on a new avatar

Science Innovations

Cellular skeletons, or cytoskeletons, are shapeshifting networks of tiny protein filaments, enabling cells to propel themselves, carry cargo, and divide. Now, an interdisciplinary team of California Institute of Technology researchers has designed a way to study and manipulate the cytoskeleton in test tubes in the lab. Understanding how cells control movement could one day lead to tiny, bioinspired robots for therapeutic applications. The work also contributes to the development of new tools for manipulating fluids on very small scales relevant to molecular biology and chemistry.

The building blocks of the cellular cytoskeleton are thin, tube-like filaments called microtubules that can form together into three-dimensional scaffolds. Each microtubule is 1,000 times thinner than a human hair and only about 10 micrometers long.
Researchers have taken these molecules out of the cell and put them into test tubes, where the tubules and motor proteins spontaneously group together to organize themselves into star-shaped structures called asters.


Comments