Life Inspirations: Sushila Sable-From Waste Picker to Ambassador of Climate Change  |  Science Innovations: Killing drug-resistant bacteria  |  Technology Inceptions: Canon EOS 200D II DSLR With Dual Pixel AF  |  Teacher Insights: Exercise activates memory neural networks   |  Management lessons: BPCL Allows Women Chemical Engineers in Night Shift  |  Health Monitor: Increase in Global Alcoholism Raises Global Disease Burden  |  Parent Interventions: Obesity in Pre-Pregnancy Stage Can Affect Quality of Breast Milk  |  Higher Studies: Indian Institute of Space Science and Technology UG Admissions  |  Technology Inceptions: Now Drones to Deliver Food   |  Technology Inceptions: India to Establish One lakh Digital Villages: Ravi Shankar Prasad  |  Best Practices: FSSAI to Impose Curbs on Promoting Unhealthy Products in School Premises  |  Management lessons: E-Services Most Important in Design of Smart Tourism Organisation  |  Rajagiri Round Table: 'Draft New Educational Policy Comprehensive, Hurdles Likely in Implementation'  |  International Edu News: Estonian schools promote English  |  Technology Inceptions: Microsoft AI Helps Leading Naukrigulf.com Attract More Jobseekers, Employers  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

October 16, 2018 Tuesday 10:27:14 AM IST

Canadian researchers develop world’s fastest camera

Science Innovations

 T-CUP, the latest camera developed by INRS researchers can freeze time in extremely slow motion; it can freeze even light!

The compressed ultrafast photography (CUP) had already provided speed up to 100 billion frames per second. However, the T-CUP system, which is based on a femtosecond streak camera could go for higher speeds. T-CUP system additionally incorporates a data acquisition system used in applications such as tomography. Researchers also used Radon transformation to obtain high-quality images.

T-CUP has a world record for real-time imaging speed and can power a new generation of microscopes for biomedical, materials science, and other applications. It could be used to analyze interactions between light and matter at an unparalleled temporal resolution.

"It's an achievement in itself," says Jinyang Liang, the leading author of this work, "but we already see possibilities for increasing the speed to up to one quadrillion (1015) frames per second!"


Speeds like that are sure to offer insight into as-yet undetectable secrets of the interactions between light and matter.

DOI: 10.1038/s41377-018-0044-7 ; DOI: 10.1364/OPTICA.5.001113


Comments