Leadership Instincts: Spartan Athletics partners with MSU Burgess Institute   |  Leadership Instincts: UW launches Faculty Diversity Initiative  |  Parent Interventions: Participating in engagement schemes improves young people’s wellbeing  |  Teacher Insights: Foreign language learners should be exposed to slang in the classroom   |  Teacher Insights: Site announced for new specialist mathematics school   |  Parent Interventions: New research shows north-south divide in family law  |  Teacher Insights: Lancaster Castle provides focus for lecture on importance of heritage sites  |  Teacher Insights: Tactile books adapted for blind children  |  Parent Interventions: 'Sleep hygiene' should be integrated into epilepsy diagnosis & management   |  International Edu News: University of Birmingham signs up to global UN agreement   |  International Edu News: Credit card-sized soft pumps power wearable artificial muscles  |  Parent Interventions: High fructose diets could cause immune system damage  |  International Edu News: Submit short films to Bristol Science Film Festival 2021  |  International Edu News: Attachable Skin Monitors that Wick the Sweat Away​  |  Parent Interventions: Scientists model a peculiar type of breast cancer  |  
October 16, 2018 Tuesday 10:27:14 AM IST

Canadian researchers develop world’s fastest camera

Science Innovations

 T-CUP, the latest camera developed by INRS researchers can freeze time in extremely slow motion; it can freeze even light!

The compressed ultrafast photography (CUP) had already provided speed up to 100 billion frames per second. However, the T-CUP system, which is based on a femtosecond streak camera could go for higher speeds. T-CUP system additionally incorporates a data acquisition system used in applications such as tomography. Researchers also used Radon transformation to obtain high-quality images.

T-CUP has a world record for real-time imaging speed and can power a new generation of microscopes for biomedical, materials science, and other applications. It could be used to analyze interactions between light and matter at an unparalleled temporal resolution.

"It's an achievement in itself," says Jinyang Liang, the leading author of this work, "but we already see possibilities for increasing the speed to up to one quadrillion (1015) frames per second!"


Speeds like that are sure to offer insight into as-yet undetectable secrets of the interactions between light and matter.

DOI: 10.1038/s41377-018-0044-7 ; DOI: 10.1364/OPTICA.5.001113


Comments