Teacher Insights: New Harvard Online course course prepares professionals for a data-driven world  |  Parent Interventions: Research shows lullabies in any language relax babies  |  International Edu News: 'Plastic bags could be 'eco-friendlier' than paper and cotton bags'  |  Leadership Instincts: Start-up with plastic waste recycling solution wins top prize at ideasinc 2020  |  International Edu News: Frailty, old age and comorbidity main predictors of death from Covid-19  |  Leadership Instincts: Cyber centre to reduce digital harm  |  Policy Indications: New funding to improve water security for 10 million people in Africa and Asia  |  International Edu News: UCL hosts global conference on UN Sustainable Development Goals  |  International Edu News: Medium-term impact of COVID-19 revealed in new study  |  International Edu News: Extremely rapid diagnostic test for Covid-19  |  Teacher Insights: Cambridge University Press to join with Cambridge Assessment  |  National Edu News: Minister inaugurates new Diamond Jubilee Lecture Hall Complex of NIT Jamshedpur  |  Education Information: CSIR partnered clinical trials website “CUReD” on Repurposed Drugs for Covid- 19  |  Teacher Insights: The 6th India International Science Festival to be held in Virtual format  |  National Edu News: Minister virtually inaugurates golden jubilee building at NIT Tiruchirappalli  |  
May 09, 2018 Wednesday 02:17:17 PM IST

Breast Cancer Linked to the Body's Internal Clock

Science Innovations

Texas: For years, doctors have associated the BRCA1 and BRCA2 gene mutations with an increased risk of breast cancer. Researchers at Texas A&M University have identified another gene that may have an impact on breast cancer - associated with the body's circadian rhythm. 

Texas A&M College of Veterinary Medicine & Biomedical Sciences (CVM) professor Weston Porter and his team have found that Period 2 (Per2), a regulatory mechanism within each cell's peripheral clock, plays a crucial function in mammalian mammary gland development and that when suppressed, Per2 leads to severely disrupted gland development in mice.

The findings, published in the scientific journal Development, add to a growing list that ties disruptions to our circadian rhythm -- that is, the "central clock" mechanism in our brains -- to a higher risk of cancer progression, obesity, some neuromuscular diseases, and other impairments, including jetlag.

Circadian rhythm is controlled by the suprachiasmatic nucleus (SCN) in the brain's anterior hypothalamus. In addition to coordinating our sleep patterns, the SCN coordinates the other peripheral clocks in our body, which run on a 24-hour cycle that corresponds with each day.


"Not only do we have a central clock, but every one of our cells has one of these peripheral clocks and they're in coordination with the central clock," Porter said. "When you wake up in the morning and see light, the light goes right into the brain and it triggers this molecular mechanism that regulates the (circadian rhythm) process."

In their study, Porter's team evaluated Per2, which provides the "negative feedback," or counterbalance, to the circadian rhythm process.

"The negative and positive feedback mechanisms are constantly in balance, going up and down. One's up during the day, the other one's up at night -- they oscillate right at 24 hours -- but when you see light, that resets it in the morning," Porter said. "When Per2 comes back, it suppresses another gene called BMAL or CLOCK."

Their finding -- that Per2 has a crucial function outside of timekeeping in mammalian mammary gland development where Per2 plays a role in cell differentiation and identity -- describes a potentially important role for Per2 in breast cancer. Per2 expression is lost in a large percentage of mammary tumors, which suggests it may have protective effects.


In addition to disruption of the developing mammary gland, Porter also saw the same defect in transplant studies, showing that it is Per2, and not just the central clock itself, that is responsible for the lack of mammary ductal growth in the developing gland.

Understanding circadian rhythm and its effects on the body have become increasingly important to the science community. The 2017 Nobel Prize for Physiology or Medicine was awarded to researchers for discoveries of the molecular mechanisms controlling the circadian rhythm, and the National Cancer Institute recently named the role of circadian rhythms in cancer as one of their 12 provocative questions for the year.


(Source: vetmed.tamu.edu)



Comments