Cover Story: Elimination Round or Aptitude Test- How to Align CUET with NEP 2020 Goals  |  Life Inspirations: Master of a Dog House  |  Education Information: Climate Predictions: Is it all a Piffle!  |  Leadership Instincts: Raj Mashruwala Establishes CfHE Vagbhata Chair in Medical Devices at IITH   |  Parent Interventions: What Books Children Must Read this Summer Vacation   |  Rajagiri Round Table: Is Time Ripe for Entrepreneurial Universities in India?  |  Life Inspirations: How to Overcome Fear of Public Speaking  |  Technology Inceptions: Smart IoT-based, indigenously-developed, ICU Ventilator “Jeevan Lite” Launched  |  Parent Interventions: Meditation Reduces Guilt Feeling  |  Teacher Insights: Music Relief for Study Stress  |  Teacher Insights: Guided Play Effective for Children  |  Teacher Insights: Doing Calculations Boosts Mental Strength  |  Best Practices: Hugging for Happiness  |  Parent Interventions: Is Frequent Childcare Outside of the Family Beneficial for a Child's Development  |  Technology Inceptions: How to Prevent the Toxic Effects of Tricloson used in Consumer Products?  |  
November 11, 2021 Thursday 01:18:38 PM IST

A Leap in Fusion Energy by Physicist

Science Innovations

Researchers at MIT lab found that radio-frequency (RF) waves travel in the turbulent interior of a fusion furnace to maintain an efficiently, operating power plant. Researchers have tried to study these RF processes using computer simulations to match the experimental conditions. A good match of synchronization would validate the computer model, and raise confidence in using it to explore new physics and design future RF antennas that perform efficiently. While the simulations can accurately calculate how much total current is driven by RF waves, they do a poor job at predicting where exactly in the plasma this current is produced. 

Comments