Health Monitor: Care for your Gut  |  Education Information: CBSE cancels class 10 Board Exams, postpones Class 12th Board Exams  |  Policy Indications: Dr Harsh Vardhan announces launch of `Aahaar Kranti’  |  Teacher Insights: X or Y? Learning is Beyond Getting the Equations Right!  |  Policy Indications: Atal Innovation Mission collaborates with Bayer  |  Parent Interventions: NITI Aayog Launches‘Poshan Gyan’, a Digital Repository on Nutrition Information  |  Education Information: EdCIL pays a highest ever dividend of Rs 12.5 Crore for the year 2019-20  |  National Edu News: Fitness Challenge for the Nation - 70th RRT Conference Intl. on 16th April  |  Parent Interventions: Reading for Fun Improves Language Skills  |  Technology Inceptions: Xiaomi Redmi Note 10 Pro  |  Technology Inceptions: Canon New image Runner Advance Dx  |  Technology Inceptions: Boat Bar 4000 DA  |  Teacher Insights: Digital Tool to Detect Fake News  |  Science Innovations: HGCO19: starting the enrolment for the PhaseI/II human clinical trials  |  National Edu News: Scientists discover the farthest Gamma-ray emitting active galaxy   |  
March 10, 2020 Tuesday 04:14:17 PM IST

A cappella to explain speech and music specialization

Teacher Insights

Speech and music are two fundamentally human activities that are decoded in different brain hemispheres. A new study used a unique approach to reveal why this specialization exists. Researchers at The Neuro (Montreal Neurological Institute-Hospital) of McGill University created 100 a cappella recordings, each of a soprano singing a sentence. They then distorted the recordings along two fundamental auditory dimensions: spectral and temporal dynamics, and had 49 participants distinguish the words or the melodies of each song. The experiment was conducted in two groups of English and French speakers to enhance reproducibility and generalizability. 

They found that for both languages, when the temporal information was distorted, participants had trouble distinguishing the speech content, but not the melody. Conversely, when spectral information was distorted, they had trouble distinguishing the melody, but not the speech. This shows that speech and melody depend on different acoustical features.

To test how the brain responds to these different sound features, the participants were then scanned with functional magnetic resonance imaging (fMRI) while they distinguished the sounds. The researchers found that speech processing occurred in the left auditory cortex, while melodic processing occurred in the right auditory cortex.

Next, they set out to test how degradation in each acoustic dimension would affect brain activity. They found that degradation of the spectral dimension only affected activity in the right auditory cortex, and only during melody perception, while degradation of the temporal dimension affected only the left auditory cortex, and only during speech perception. This shows that the differential response in each hemisphere depends on the type of acoustical information in the stimulus.


 For humans, both speech and music are important means of communication. This study shows that music and speech exploit different ends of the spectro-temporal continuum, and that hemispheric specialization may be the nervous system’s way of optimizing the processing of these two communication methods.


(Content and Image Courtesy: https://www.mcgill.ca/newsroom/channels/news/using-cappella-explain-speech-and-music-specialization-320767)



Comments