Technology Inceptions: Powerful Robots Helps in Faster Detection of Bridge Defects  |  Teacher Insights: Are you susceptible to persuasion?   |  Science Innovations: Mushrooms to help fight TB  |  Management lessons: How to Create Cool Brands and Stay Cool  |  Health Monitor: Honey Helps Increase Testosterone Levels in Males  |  Parent Interventions: Women Oncologists Skip Scientific Conference to Take Care of Children  |  Career News: Chinmaya University-CPPR Announce MA in Public Policy and Governance Course  |  Parent Interventions: Electrical zap to retrieve memory  |  Science Innovations: Laura Kreidberg: Trying to Spot the First Sign of Life Outside Earth  |  Parent Interventions: Don't Let Children Drink Too Much Juice, Sugar Water With Little Nutrients  |  Technology Inceptions: Low-Cost Tissue Freezing Device to Help In Breast Cancer Treatment  |  Science Innovations: Exomoons May Become Quasi-planets  |  Science Innovations: Blue Tongue Lizard Babies As Clever as Adults  |  Parent Interventions: Quality Sleep for Teen Health   |  Technology Inceptions: MIT Develops Artificial 'Muscles' Based on Fibers  |  
  • Pallikkutam Magazine
  • Companion Magazine
  • Mentor
  • Smart Board
  • Pallikkutam Publications

February 09, 2018 Friday 11:02:16 AM IST

4-D Printing is the Next Revolution

Science Innovations

8th  February, 2018: In a recent study authored by Professor Pasquale Ciarletta at the MOX Laboratory, Department of Mathematics, Politecnico di Milano, published in Nature Communication, points to the possibility of the next generation printing, namely 4D printing. Additional to the printing in three dimension based on the computer-fed 3D model, 4D printing incorporates the possibility of fabrication of objects with a programmable shape over time.

The basic insights on 4D printing is derived from the research of Professor Ciarletta, which provides mathematical insights into controlling the sudden nucleation of localized furrows, also known as creases, in soft solids. These mathematical concepts are expected to help in the fabrication of devices with adaptive surface structures or morphology at different length-scales. Further, this concept will be helpful in the description of developmental biology, where one needs to explain the spontaneous emergence of patterns during tissue morphogenesis, e.g., the convolutions of the brain, or metastasis in tumor development.

“This study proposes a novel mathematical approach to accurately predict the experimental conditions triggering the onset and the morphology of creases, thus paving the way for controlling their appearance on-demand, down to nanometric scales,” comments Professor Ciarletta.


The new concepts are expected to yield potential breakthrough in the design and the fabrication of the next-generation of morphable materials and to provide new insights into the stretchable electronics, self-foldable machines, and lab-on- a-chip devices, etc.

Comments