Policy Indications: Government ensures quality education and educational infrastructure  |  National Edu News: Aarogya Setu is now open source  |  Leadership Instincts: "Success of Digital India Initiatives a Hope for Poor and Developing Countries"  |  National Edu News: Kangra Tea could lower coronavirus activity better than HIV drugs  |  Leadership Instincts: CeNS designs comfortable face mask   |  Leadership Instincts: NTPC in pact with ONGC to set up Joint Venture Company  |  Science Innovations: IASST develops electrochemical sensing platform for food items  |  Policy Indications: National Test Abyaas App  |  Guest Column: The Eight Billion Opportunity!  |  Finance: Covidonomics   |  Parent Interventions: Enrichment programmes help children build knowledge  |  Parent Interventions: Half of moms-to-be at risk of preeclampsia are missing out on preventive aspirin  |  Parent Interventions: First month of data shows children at low risk of COVID-19 infection  |  Teacher Insights: First-generation learners being left behind in global education  |  Teacher Insights: Deep learning: A new engine for ecological resource research  |  
February 09, 2018 Friday 11:02:16 AM IST

4-D Printing is the Next Revolution

Science Innovations

8th  February, 2018: In a recent study authored by Professor Pasquale Ciarletta at the MOX Laboratory, Department of Mathematics, Politecnico di Milano, published in Nature Communication, points to the possibility of the next generation printing, namely 4D printing. Additional to the printing in three dimension based on the computer-fed 3D model, 4D printing incorporates the possibility of fabrication of objects with a programmable shape over time.

The basic insights on 4D printing is derived from the research of Professor Ciarletta, which provides mathematical insights into controlling the sudden nucleation of localized furrows, also known as creases, in soft solids. These mathematical concepts are expected to help in the fabrication of devices with adaptive surface structures or morphology at different length-scales. Further, this concept will be helpful in the description of developmental biology, where one needs to explain the spontaneous emergence of patterns during tissue morphogenesis, e.g., the convolutions of the brain, or metastasis in tumor development.

“This study proposes a novel mathematical approach to accurately predict the experimental conditions triggering the onset and the morphology of creases, thus paving the way for controlling their appearance on-demand, down to nanometric scales,” comments Professor Ciarletta.


The new concepts are expected to yield potential breakthrough in the design and the fabrication of the next-generation of morphable materials and to provide new insights into the stretchable electronics, self-foldable machines, and lab-on- a-chip devices, etc.

Comments