National Edu News: 71st RRT Conference International on Appropriate Pedagogy of the Digital Natives  |  Guest Column: Collaboration + Research = Global Solutions   |  Teacher Insights: How Digital Technology Helps in Growth and Access to Quality Education  |  Management lessons: How Brands Use CARE to Stay on Top in Instagram  |  Hobbies &Trends: At Full Throttle  |  Finance: Bitcoin Mobile Apps Vulnerable to Security Threats: Guan-Hua Tu, MSU  |  International Edu News: Use plants' ability to tell the time to make food production more sustainable  |  International Edu News: Scientists develop new class of cancer drug with potential to treat leukaemia  |  International Edu News: Loan applications processed around midday more likely to be rejected  |  International Edu News: Researchers find climate change impacts plankton – a key marine food source  |  International Edu News: Nature must be a partner, not just a provider of services – Oxford report  |  National Edu News: Approval to MoU between India and UK on Global Innovation Partnership  |  National Edu News: Transfer of CSIR-CMERI technologies to three MSMEs  |  Parent Interventions: Child Learning Programs: How to Find the Right One for You  |  Rajagiri Round Table: Fitness Challenge for the Nation  |  
July 22, 2019 Monday 08:06:47 PM IST

"3D Epigenetics" Helps Understand How Genome Folding Influences Our Body

Science Innovations

The University of Pennsylvania bioengineers have devised a new technology that uses light at boths ends of a genome beaded string and foling it into specific shapes so that certain genes are in direct physical contact with each other. The science of genomic shape manipulation is called "3D Epigenetics".

Phillips-Cremins, assistant professor at Penn Engineering hope to determine how different configurations lead to different combinations of genes that are expressed in our body. The light-triggered folding method, known as light-activated dynamic looping (LADL), can fold genomes into specific loops in a matter of hours. The loops are temporary and can be easily undone. Since prior research from the Phillips-Cremins lab indicates that these looping mechanisms may play a role in some neurodevelopmental diseases, this speedy new folding tool may one day be of use in further research or even treatments.
It is critical to understand the genome structure-function relationship on short timescales because the spatiotemporal regulation of gene expression is essential to faithful human development and because the mis-expression of genes often goes wrong in human disease, Phillips-Cremins says. “The engineering of genome topology with light opens up new possibilities to understanding the cause-and-effect of this relationship. Moreover we anticipate that, over the long term, the use of light will allow us to target specific human tissues and even to control looping in specific neuron subtypes in the brain."



Comments