Education Information: Cardiff achieves ‘Champion’ status for gender equality in physics  |  Parent Interventions: Online survey to assess needs of children and young people with cancer   |  Parent Interventions: Study links severe childhood deprivation to difficulties in adulthood  |  Parent Interventions: New study aims to learn the lessons of homeschooling  |  Teacher Insights: Using e-learning to raise biosecurity awareness  |  National Edu News: Science and Technology in finding solutions to combat COVID-19  |  National Edu News: Ek Bharat Shreshtha Bharat programme  |  Health Monitor: Beware of Hepatitis D, It can Lead to Hepatocellular Carcinoma  |  Teacher Insights: Education project to understand Birmingham learning at home during COVID-19  |  Education Information: UoG launches new onlines to meet some of the challenges of Covid-19  |  Teacher Insights: Professor Woolfson awarded Humboldt Research Prize  |  Parent Interventions: Parents paying heavy price for lockdown  |  Teacher Insights: Great Science Share brings science investigations into homes  |  Education Information: App will reduce high risk of falls during and after Lockdown  |  Education Information: University of Manchester to decarbonise its investment portfolio  |  
October 28, 2019 Monday 02:17:41 PM IST

SCIMMA to Develop Algorithms, Databases for Multi Messenger Astrophysics

Image by Pexels from Pixabay

A Scalabale Cyberinfrastructure Institute for Multi-Messenger Astrophysics has been conceived with the goal of developing algorithms, databases, computing and networking cyberinfrastrucutre to help scientists interpret multi-messenger observations.
The project of the National Science Foundation with a conceptualisation phase funding of $2.8 mn for two years  will be undertaken by University of Wisconsin-Milwaukee and nine collaborating institutions, including the University of Washington.
Multi-messenger astrophysics combines observations of light, gravitational waves and particles to understand some of the most extreme events in the universe. For example, the observation of both gravitational waves and light from the collision of two neutron stars in 2017 helped explain the origin of heavy elements, allowed an independent measurement of the expansion of the universe and confirmed the association between neutron-star mergers and gamma-ray bursts.
The institute would facilitate global collaborations, thus transcending the capabilities of any single existing institution or team. It is directed by Patrick Brady, a professor of physics at the University of Wisconsin-Milwaukee and director of the Center for Gravitation, Cosmology and Astrophysics. One of three co-principal investigators on the project is Mario Jurić, a UW associate professor of astronomy and senior data science fellow at the UW eScience Institute.

Comments