Policy Indications: NEP 2020: Implementation Plan for School Education  |  National Edu News: Union Education Minister virtually interacts with KV students   |  Expert Counsel: The India Way  |  Science Innovations: DST Scientists find clue to anomalous behaviour of self-propelled fluctuations  |  Technology Inceptions: INSPIRE Faculty fellow’s engineering to produce heat-tolerant wheat varieties  |  National Edu News: Indians to soon have access to Chitra Flow Diverter stent  |  National Edu News: Sensitive Youth will Create New India: Smriti Zubin Irani  |  Education Information: Sports Ministry to name all upgraded sporting facilities after sportspersons  |  Finance: Elephant in the Room  |  Guest Column: Pandemic Effect on Education  |  Parent Interventions: Fast food restaurant proximity likely doesn't affect children's weight   |  Parent Interventions: Families' remote learning experience during lockdown positive   |  Health Monitor: Helplines are Open  |  National Edu News: Dr Harsh Vardhan inaugurates the new entity CSIR-NIScPR  |  National Edu News: Remarkable indigenous technologies developed during the Covid pandemic   |  
August 06, 2019 Tuesday 10:19:22 AM IST

Madhava: The Kerala Mathematician Who Devised Calculus Ahead of Newton, Leibniz

Creative Living

Students of the day, who make their tryst with calculus, may not have heard about Madhava, a mathematician of Kerala,who prepared the way for Newton (1642-1727) and Leibniz (1646-1716), theindependent founders of the discipline.The contributions of Madhava of Sangamagrama (c. 1340- 1425), who lived in a place believed to be the present-day Aloor near Irinjalakuda in Thrissur District of Kerala, were so substantial that he deserves to be counted along with the founders of mathematical analysis based on calculus, infinite series expansion of functions and their rational approximations.Why didn’t the world outside perceive Madhava’s contributions? Why didthe light he brought out not kindle a similar scientific revolution as was the case with Newton and Leibniz?

 

Saga of Indian Education

India was among the very first nations that had an early Renaissance and it was the golden age for its higher education(5th century BCEto 7th century CE).Drawing heavily from Sri Buddha’slegacy, Buddhist schools transformed Indian education system from its typical exclusivist tendencies and its ritualistic orientations. Earlier to Buddha, education was the exclusive right of the uppermost caste of Hindu system, theBrahmins. The warrior and ruling caste (Khsatrias) were entitled to train in practical skills that equip them for warfare and governance. Two other castes, namely Vaisyas and Sudras, were said to have been denied access to formal education under threat of severe punishments for appropriating the same. The plight of Ekalavya,  who had to offer his thump as gurudakshina (Gift to the Teacher), for illegally mastering skills of archery is well known. Sri Buddha, an iconoclast, ensured that every person, irrespective of his caste, religion, gender or nationality, have access to education. Schoolswere attached to his monasteries, some of which in the course of time developed into international universities. Universities such as Takshasila, Nalanda, Vikramashila, Valabhi, Somapura, Jagaddala, Odantapuri and Pushpagiri, were famous ones of the time.


Interestingly, all these universities were established many centuries before the establishment of the first university of Europe, namely, the University of Bologna (1088), proclaiming to the world the erstwhile glory of the Indian higher education system. The Buddhist system of education is said to have spread to the South of India under the name, Pallikkutam, a rendering in Pali language for Buddhist schools. (Incidentally, it is this profound tradition of Indian education, the educational magazine Pallikkutam promotes.)

 

For Sri Buddha, education was an exploration of the outer world, using tools of logical rigor and scientific discipline; the purpose of education was not merely to interpret and reinterpret the Vedic texts. In line with this philosophy, Buddhist universities adopted languages, astronomy, medicine, science, etc. in their curricula. They adopted objective methods of investigations based on a unique logic system, which stands much closer to the methods of modern scientific investigations.

 


This touch of Buddha on Indian educational legacy developed as an anchoring point for many systems developed thereafter. Thus, several non-Buddhist educational traditions imbibed Buddhist legacy, though partially.The school of Madhava of Sangamagrama was not an exception.

 

Madhava, the Astronomer

 Only two works of Madhava have survived the test of time. The first of them is Sphuacandrāpti(Computation of True Moon), which enunciates a method for the computation of the position of the moon at intervals of 40 minutes each throughout the day. The second book is known as Vevāroha (Bamboo Climbing). As the name indicates, the book describes a computational procedure thatreminds of climbing a bamboo tree, going up and up step by step at measured equal heights.In both these books, Madhava attempted to compute the true longitude of the Moon, making use of the so-called Candravākyas (Table of Moon-mnemonics), a collection of numbers, related to the motion of the Moon in its orbit around the Earth, which is ascribed to Vararuchi (ca. 4th century CE), a legendary astronomer of ancient Kerala. Madhava revised the Chandravākyāsand expounded a new method of systematically computing them in Vevāroha.


 

Yet another book ascribed to Madhava is Golavada (Treatise on Sphere). Madhava himself possessed the title Golavid (Master of Spherics), indicating his expertise in matters relating to spheres, especially to those astronomical spheres like planets and their moons.

 

The Kerala astronomy got mixed up with its causal interpretations in astrology, leading to Jyotisha, which does not strictly follow the scientific methods of investigation.  Being embedded within Jyotisha, Kerala mathematics (Ganita) also did not find significant technological applications. Jyotisha is identified as one of the six Vedangas (“Limbs of the Veda”), whose purpose was to support Vedic rituals, determining suitable timing for such rituals.Such ritualistic interpretation of astronomy and mathematics is believed to have restricted its growth and thwarted its communication to the rest of the world. The legacy of Buddha, which kept scientific knowledge away from the clutches of vedic interpretations, was foregone. Mathematical astronomy of Madhava could find only afew practical applications such as in time keeping and in the development of calendars.


 

Madhava, the Mathematician

In his book, Mathematics in India (2008), Kim Plofker refers to Madhava as the ‘Crest-jewel’ of the Kerala School of Mathematics. The book Mahajyanayanaprakara (Method of Computing Great Sines), which describes a mathematical method of evaluating the sine function making use of the method of infinite series, is often ascribed to Madhava. Heand the members of his school extended the method further to calculate infinite series of other trigonometric functions, including cosine, tangent and arctangent. In other words, the so-called Maclaurin series (1698 – 1746) were already discovered by the Kerala mathematicians at least two centuries ago.

 


Yuktibhāā (1530 CE), a book by Jyesthadeva, one of the disciples of Madhava, presents proof for the power series for inverse tangent, discovered by Madhava. Interestingly, the infinite Taylor series describing the same was invented only three centuries laterby James Gregory! However, history has done some justice to Madhava, by renaming the series as Madhava–Gregory series in the modern times.

 

By marking a quarter circle at twenty-four equal intervals, Madhava gave the lengths of the half-chord corresponding to each of them,which he developed into an accurate table of sines. His understanding about the expansion of sines in infinite series helped him in this effort.

 


The book Mahajyānayanaprakāra reports Madhava’s attempts to accurately estimate the value of the mathematical constant Pi, via an infinite series expansion of π. These results are known today as the Madhava-Leibniz series. Madhava also developed correction terms to ensure fast convergence of the infinite series. This helped him to computean approximation of π, correct up to 11 decimal places, i.e. 3.14159265359, which was a supreme achievement in his time.

 

Madhava also made path-breaking contributions to the development of calculus, as we know it today. He and his disciples developed some cornerstones of calculus such as differentiation, term-by-term integration, iterative methods for solutions of non-linear equations, and the theory that the area under a curve is its integral.Here, Madhava is found toextend some results found in earlier works, including those of Bhaskara.

 


Yuktibhāā of Jyeṣṭhadeva could be considered the world’s first calculus textbook. Jyeṣṭhadeva uses the term sankalitam (Collection) to represent integration. For example, he writes: “ekadyekothara pada sankalitam samam padavargathinte pakuti”, meaning “integration of a variable (pada) equals half that variable squared (varga); i.e. The integral of xdx is equal to x2/2. This is identical to the results in modern mathematics.

 

It is said that Sir Isaac Newton and Gottfried Wilhelm Leibniz discovered calculus independently. However, a deeper analysis of the annals of mathematics written on the palm leaves of Kerala suggests that calculus was in the process of development at least two centuries ahead during the times ofMadhava. As G.G. Joseph writes in his book, Passage to Infinity: Medieval Indian Mathematics from Kerala and Its Impact, Madhava may be considered the founder of mathematical analysis in this sense. At least, he is the one who paved the way for Newton and Leibniz in this respect!

 


In search of truth

The saga of Madhava, one of the most the distinguished mathematical genii of Kerala, calls for a definitive separation between mathematics from itsreligious interpretations. The growth of mathematics and science in the West was preceded by such a radical change which enabled Renaissance scientists to pursue an independent search of truth.Such a call was made by the Buddhists, who ushered in Indian Renaissance.

 


It is high time, thatwe reinvent the scientific temper as advocated by the founding fathers and mothers of the nation.There is a theory that adherence to Sanskrit and astrology was one of the stumbling blocks for Madhava and his school to announce their discoveries to the world on time.  We need to develop an educational ambience that boosts creative and critical thinking as well asentrepreneurship and innovation. This alone will quench the thirst of billions of young minds of the nation. We also need to equip the youth of the nation with alanguageofcurrency and scientific temper to enable them to communicate with the rest of the world. Let the sparks of creativity and innovationof the young minds of Indiaignite the creative minds of the rest of the world and let them recapture bygone glory of higher education in India.


Dr. Varghese Panthalookaran

Dr Varghese Panthalookaran, the founding Director of Rajagiri Media is a Professor of Engineering (Dr.-Ing.) at Rajagiri School of Engineering and Technology (RSET) in Kochi, India. He is an author of four books in three different languages, Malayalam, English and German. His drama book in Malayalam titled: “Buddhan Veendum Chirikkunnu” (translated: “Buddha Laughs Again”) has won the Endowment Award of Kerala Sahitya (Literature) Academy in 2000. His book in German language, “Die Lehre Jesu als Schluessel zur Lebensfreude” is published in 2007 by LIT Verlag, Münster, Germany. His thesis “CFD-assisted characterization and design of hot water seasonal heat store” in published by Shaker Verlag, Aachen, Germany in 2007. His book on creative thinking skills and entrepreneurship, “Condemned to be Creative” is published by Pallikkutam Publications, India in 2019. It is a useful resource for students, teachers, academicians and management professionals to develop the skills of creative thinking in daily life. He has also recently developed a new pedagogy, named Pallikkutam Pedagogy, integrating the educational legacy of India with the requirements of imparting the 21st century skills that make next generation learners to render them future-ready.
Read more articles..
Comments